

Tetrahedron Letters 41 (2000) 5583-5587

TETRAHEDRON LETTERS

Intermolecular [3+2] MIRC reactions with alkynoates. Asymmetric Michael addition leading to a nonracemic cyclopentene-annulated α , β -butenolide^{†1}

Philippe Nakache, Eugene Ghera* and Alfred Hassner*

Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel

Received 27 March 2000; accepted 23 May 2000

Abstract

A novel Michael-initiated ring closure reaction involving allylic chlorosulfone (2) and γ -alkoxy- α , β -ynoates to afford 4-methylenecyclopentenecarboxylates is reported, while with γ -alkylynoates no reaction occurred. With chiral phenyl ynoates **4**, the reaction proceeds by 1,3-asymmetric induction and leads further to a nonracemic annulated α , β -butenolide (7). \bigcirc 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Michael reactions; cyclopentenecarboxylates; butenolides; asymmetric induction; lithium ion chelation.

The emergence of widespread targets containing five-membered carbon rings, such as quinane terpenes, has led to continuous interest in new pentannulation strategies. Among the [3+2] disconnections leading to cyclopentanes, utilization of trimethylenemethane (TMM) equivalents as the three-carbon units have been extensively used.² Within this context, the intermolecular Michael-initiated ring closure (MIRC) reaction was effectively utilized for the regio- and stereo-selective synthesis³ as well as the asymmetric synthesis⁴ of methylenecyclopentanes.

Limited success, however, was achieved in the application of intermolecular [3+2] schemes involving acetylenic acceptors to obtain 4-methylenecyclopentenes. Using mainly methylenecyclopropanes as the TMM synthons, such routes were of limited scope⁵ or presented experimental restrictions.⁶ The Pd-complexed TMM species, successful in cycloadditions with olefins, failed when applied to acetylene acceptors.⁷

PhSO₂ X 1:
$$X = H$$
; 2: $X = Cl$; 3: $X = Bl$

^{*} Corresponding authors. Fax: +972-3-5351250; e-mail: hassna@mail.biu.ac.il

[†] Dedicated to Professor Richard Neidlein on the occasion of his 70th birthday.

5584

We report herein the synthesis of 4-methylenecyclopentenes by a simple MIRC route from 2-(chloromethyl)-3-phenylsulfonyl-1-propene $(2)^8$ (as the TMM synthon) and readily available γ -alkoxy- α , β -alkynoates 4. The results are summarized in Table 1.⁹ By contrast, we found that in the absence of oxygen substitution at C-4, the γ -alkylated or arylated ynoates do not undergo addition of lithiated allylic sulfones 1–3.^{10,11} Formation of open-chain adducts, via protonation of the reversible intermediate 5, was not observed. The use of phenyl instead of ethyl ynoates resulted mostly in improved yields and better diastereoselectivity (entries 7 and 8, Table 1). Moreover, the nonracemic (S)-ethyl ynoate 4j,¹² afforded with 2 a 1:1 stereomeric mixture of cyclopentenecarboxylates (6j), whereas the corresponding phenyl ester 4k gave under the same conditions a single diastereoisomer 6k (entries 10 and 11).¹³ This 1,3-asymmetric induction resulting from conjugate addition to a chiral ynoate may be attributed to a preferred facial approach due to additional chelation between the Li cation and the aryl group of the ester. The effect of aryl-Li ion chelation on remote asymmetric induction has recently been reported by us.¹⁴ Utilization of a bulky, nonaromatic ester (41) resulted in a 1:1 stereomeric mixture of cyclopentenes (61, entry 12), thus eliminating the steric factor as accounting for the stereoselective formation of **6k**.

		2 $\frac{\text{Bulli, THF-DMPU}}{\text{RC} \equiv \text{CCO}_2 \text{R} (4)}$ PhSO ₂ R = 5 CO ₂	Cl PhS		र
entry		alkynoates	product	% yield ^a	dr ^b
1 2 3 4 5 6 7 8 9	4a 4b 4c 4d 4e 4f 4g 4h 4i	$R=CH_{2}OTBS; R'=Et$ $R=CH_{2}OTBS; R'=Ph$ $R=CH_{2}OCH_{2}OEt; R'=Et$ $R=CH_{2}OCH_{2}OEt; R'=Ph$ $R=CH_{2}OMe; R'=Et$ $R=CH_{2}OMe; R'=Ph$ $R=CH(CH_{3})OTBS; R'=Et$ $R=CH(CH_{3})OTBS; R'=Ph$ $R=CH(OTBS)CH_{2}CH_{2}OTBS; R'=Et$	6a 6b 6c 6d 6e 6f 6g 6h 5 6h	48 58 60 67 53 64 47 57 30	50:50 80:20
10	4j	$R = \bigvee_{0}^{0}$; R'=Et	6j	42	50:50
11	4k	R= , R'=Ph	6k	44	>99:1
12	41	R= ; R'=CH(CH ₃) ₂	61	41	45:55

 Table 1

 [3+2] MIRC reaction of chlorosulfone 2 with ynoates 4

^aisolated products which were characterized by¹H,¹³C NMR spectroscopy and by HRMS. ^bdiastereomeric ratio Acid treatment of phenyl ester **6k** afforded the α,β -butenolide **7** in which the given stereochemistry is based on NOE measurements (Eq. (1)).¹⁵ By contrast, the less strained unsaturated δ -lactones **8** were obtained from the diastereomeric ethyl esters **6j** (Eq. (2)).¹⁶ The kinetic preference for the formation of **7** rather than of δ -lactones **8** may be due to the better leaving (phenoxy) group in **6k**.

(a) TFA cat, MeOH, rt, 5h, 85%; utilization of p-TSA-MeOH gave 7 containing 10% of 8

The cyclopentenation route provides an entry to annulated α , β -butenolides such as 9, which, on exposure to an aqueous base, can be converted to an annulated cyclopentadiene **10** (Eq. (3)).¹⁷

(a) 2N HCl, THF, rt, 4h; (b) p-TSA cat, benzene, reflux, 2h, 89% yield over two steps. (c) Na₂CO₃ aq, THF, rt, 1h, >95%.

It is noteworthy that lithiated methallyl sulfone **1** reacted more effectively than chlorosulfone **2** with γ -oxygenated ynoates and afforded 82% of 1:1 conjugate adducts (30 min, -60°C), including an isolated 53% of **11** arising from *cis* addition of the organometallic to the double bond. Though lithiated **1** underwent chloride displacement with methallyl chloride, it led solely to proton transfer when exposed to chloroallylsulfone **2**, to afford **12** and **1** upon D₂O quenching. The

higher stability of the lithio derivative of 2 is attributed to Li–Cl coordination (A), hence its lower reactivity in conjugate additions.¹⁸

In conclusion, the coordination between the γ -alkoxy group of ynoates **4** and the Li cation has proven critical for successful MIRC reaction utilizing the lithiated allyl sulfone **2**, presumably by displacement of the equilibrium toward **5**, thus promoting the ring closure. Additional coordination of the lithium cation with the aromatic group of the ester in **4** contributes to the stereoselectivity of the conjugate additions.

Acknowledgements

The authors wish to thank the US–Israel Science Foundation and the Marcus Center for Pharmaceutical and Medicinal Chemistry at Bar-Ilan University for financial support, and Dr. Hugo E. Gottlieb for his valuable help in NMR analysis.

References

- 1. Stereochemistry. Part 91. For part 90 see: Gottlieb, L.; Hassner, A. Synth. Commun. 2000, in press.
- For reviews, see: Chan, D. M. T. In *Comprehensive Organic Synthesis*; Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 5, pp. 287–313; Hudlicky, T. *Chem. Rev.* 1989, 89, 1457.
- 3. Ghera, E.; Yechezkel, Y.; Hassner, A. J. Org. Chem. 1996, 61, 4959, and references cited therein.
- 4. Yechezkel, T.; Ghera, E.; Hassner, A. Tetrahedron: Asymmetry 1996, 2422.
- Binger, P.; Buch, H. M. Top Curr. Chem. 1987, 135, 77; Binger, P.; Lu, Q.-H.; Wedemann, P. Angew. Chem., Int. Ed. Engl. 1985, 24, 316.
- Yamago, S.; Ejiri, S.; Nakamura, E. Angew. Chem., Int. Ed. Engl. 1995, 34, 2154; see also: van der Louw, J.; van der Baan, F.; Bickelhaupt, F.; Klumpp, G. W. Tetrahedron Lett. 1987, 28, 2889.
- 7. Trost, B. M.; Balkovek, J. M.; Angle, S. R. Tetrahedron Lett. 1986, 27, 1445.
- 8. Breuilles, P.; Uguen, D. Tetrahedron Lett. 1987, 28, 6053.
- 9. In a typical experiment, BuLi in hexane (1.2 mmol) was added to a stirred solution of 2 (1.3 mmol) in anhydrous THF (4 ml) and DMPU (1 ml) under argon, at -78° C; After 15 min the alkynoate (4, 1 mmol in 1 ml THF) was added and stirring of the mixture continued at -60° C for about 4 h and the reaction was quenched (aqueous NH₄Cl) after all the alkynoate reacted (TLC). The crude product, after extraction with ether, was rapidly filtered via a short silica column (ethyl acetate–ether) to separate unreacted 2 and the polymerized polar material and then purified by silica gel (flash) chromatography (petroleum ether–ethyl acetate).
- Reaction of 2 with unsubstituted ethyl propiolate afforded, however, the open-chain adduct; see also: Alonso, D. A.; Flavello, L. R.; Mancheno, B.; Najera, C.; Tomas, M. J. Org. Chem. 1996, 61, 5004.
- Stabilized carbanions are poor donors for intermolecular Michael reactions with γ-alkyl or aryl ynoates unless the adduct intermediate is trapped by strong electrophiles: see, e.g.: Jung, M. E. In *Comprehensive Organic Synthesis*; Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 4, p. 41; Bury, A.; Joay, S. D.; Stirling, C. J. M. *J. Chem. Soc., Chem. Commun.* 1986, 124.

- 12. For the preparation of a similar ester, see: Boeckman, R. K.; Charette, A. B.; Asberom, T.; Johnston, B. H. J. Am. Chem. Soc. 1991, 113, 5337.
- Data for **6k**: mp=117°C; [α]_D=-69.3 (c=1.5, CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ=1.41 (s, 3H), 1.63 (s, 3H), 3.19 (dq, J=18.2, 2.4 Hz, 1H), 3.29 (d, J=19.3 Hz, 1H), 4.26 (dd, J=7.20, 7.10 Hz, 1H), 4.47 (t, J=7.19 Hz, 1H), 4.71 (s, 1H), 5.12 (s, 2H), 5.52 (t, J=7.1 Hz, 1H), 7.05-7.13 (m, 2H), 7.26 (m, 1H), 7.42 (m, 2H), 7.57 (m, 2H), 7.66-7.71 (m, 1H), 7.86-7.89 (m, 2H).
- Ghera, E.; Kleiman, V.; Hassner, A. J. Org. Chem. 1999, 64, 8; for subsequent similar observations, see: Juaristi, E.; Leon-Romo, J. L.; Ramirez-Quiros, Y. J. Org. Chem. 1999, 64, 2914; Harris, C. R.; Kuduk, S. D.; Balog, A.; Savin, K.; Glunz, P. W.; Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121, 7050.
- Data for 7: mp=81°C; [α]_D²⁰=-70 (CHCl₃); IR (film): 1636, 1756 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 2.68 (d, J=20 Hz, 1H), 3.07 (dq, J=20, 2 Hz, 1H), 3.98 (dd, J=12.5, 3.8 Hz, 1H), 4.07 (dd, J=12.5, 3.8 Hz, 1H), 5.02 (m, 1H), 5.39 (m, 1H), 5.43 (m, 1H), 5.50 (m, 1H), 7.56 (m, 2H), 7.71 (m, 1H), 7.79 (m, 2H); ¹³C NMR: δ 31.68, 61.20, 73.09, 81.07, 118.96, 129.17, 129.72, 134.73, 134.87, 135.30, 142.94, 143.21, 163.21; NOE: strong interaction for H₁-CH₂OH, very weak for H₁-H₂.
- 16. Data for 8: IR: 1722 cm⁻¹; The ¹³C NMR spectrum (600 MHz, CDCl₃) exhibits a long range interaction between the C=O group (δ 161.1) and one of the protons of the oxymethylene group (δ 4.56) which is missing in the spectrum of 7; other spectral data agree with the given structure.
- Data for 9: ¹H NMR (300 MHz, CDCl₃: δ 2.60 (d, *J*=10 Hz, 1H), 3.10 (d, *J*=10 Hz, 1H), 5.02 (m, 2H), 5.16 (d, *J*=9 Hz, 1H), 5.44 (s, 1H), 5.53 (s, 1H), 7.52–7.57 (m, 2H), 7.68–7.78 (m, 3H); ¹³C NMR: δ 31.80, 69.37, 73.52, 77.00, 118.98, 128.28, 128.43, 134.72, 135.07, 142.06, 143.09, 162.96. MS: 294 (MNH₄⁺, 227 (MH⁺). Compound **10**: ¹H NMR (300 MHz, CDCl₃): δ 2.52 (s, 3H), 3.44 (t, *J*=3.1 Hz, 2H), 5.10 (t, *J*=3.1 Hz, 2H), 7.58–7.94 (m, 5H).
- 18. In contrast with the well-known effects of Li cation coordination with heteroatoms, the influence of Li–Cl coordination was not sufficiently explored; see, however: Gschwend, H. W.; Rodriguez, H. R. In Org. Reactions; Vol. 26, 1979; pp. 74–75; Najera, C.; Sansano, J. M. Tetrahedron Lett. 1992, 33, 6543. For an example of F–Li coordination effects, see: Gilday, J. P.; Widdowson, D. A. Tetrahedron Lett. 1986, 27, 5525. We are indebted to Prof. G. H. Posner for valuable comments.